Photonics and the Evolution of Ultrasensitive Gas Analyzers: Past, Present, and Future

EPIC 2022

James J. Scherer, PhD CEO, Aeris Technologies, Inc. james.scherer@aerissensors.com

aeris: "AYRis", air (latin)

- The atmosphere (top O₃ layer) extent is only 1/400th the Earth's diameter

-This thin, fragile shell supports all life and controls the climate.

- We can now monitor the atmosphere with sufficient resolution via photonics

-Wide use is limited by cost

-The future of atmospheric monitoring lies in the commoditization of emerging photonics technologies.

Critical environmental species drive many parallel markets

Tough Requirements: Greenhouse Gases, Pollutants

- GHG's: WMO/NIST target <u>accuracy</u>
 - CO₂: 100ppb (@ 400ppm)
 - CH₄: 2ppb (@1840ppb)
 - N₂O: 0.1ppb (@325ppb)
- Pollutants: regulatory (EPA, OSHA)
 - CO: 2ppb
 - HCHO: 2ppb (LEED is <20ppb abs.)
 - Ethylene Oxide: <1ppb
- >10⁻³ accuracy at <u>trace levels</u> is non-trivial! Traditional methods are inadequate
 - (e.g. NDIR, FTIR, Chemi-)

Ultrasensitive gas analysis methods are required!

The Past: Ultrasensitive Cavity Technique Origins

5

- <u>1980's</u>: Cavity Ringdown methods (CAPS, CRDS) came from high R mirrors for defense
 - R=99.99% mirrors: laser-ring gyros for defense guidance (missiles, etc.)
 - Laser weapons programs: SBL and ABL at 3.7um (HF/DF) and 1.3 micron (COIL)
 - PVD, IBS, IAD methods all developed using metal-oxide and (redacted)-fluoride coatings.
- The need to kill or prevent yourself from being killed was a great motivator!
- What else were cavity methods good for?

1989-2000: CRDS Evolution via Photonics

- Late 80's: U.C. Berkeley we used CRDS for for pure spectroscopy using large lasers:
 - Molecular beams, ss jets, plasmas: Dye Lasers
 - 5 miles through snow on foot to the lab
- 1994: (*Sandia Labs*) we extended CRDS to the MIR for flame research using tunable OPO's
- mid 1990's: Los Gatos Research (LGR) we invented new cavity methods for use with new NIR semiconductor lasers (ICOS and OA-ICOS)
 - Others also integrated NIR lasers with CRDS
- Mid 1990's: LGR we paid Sarnoff \$200K for a single NIR wafer run
 - by 2000 NIR lasers commoditized for telecom

2000's: Commercialization of Cavity-based NIR Analyzers

- Revolution from cryogenic diode lasers to COTS room temperature devices was a game changer
- <u>\$B telecom markets</u> commoditized NIR, single frequency, tunable semiconductor lasers
 - Wavelengths 1300 nm &1500-1600nm
- Cavity methods + telecom lasers=commercially viable ultrasensitive gas analyzers
- To date, 1000's of cavity-based gas analyzers sold, still considered by some state-of-the-art
 - LGR (ABB), Picarro, Tiger, AP2E, LiCor
- 201X-Present, ... systems still relatively large, power hungry, mirrors remain weakest link *is there a better way*....?

Transition to the MIR: Moving Away From Cavities

Absorption (Beer's Law) \approx line strength x path length x concentration

MIR: <u>Cavities no longer required</u> to achieve the same/superior sensitivity

Transition to the Middle Infrared (MIR)

- Late-90's to 200X: Quantum Cascade MIR lasers (QCL's)
 expensive (\$30K), limited supply, high power/heat
- In 2002, we founded NovaWave: Telecom lasers and NLO's to make MIR lasers using Difference Frequency Generation (DFG): Two Telco lasers+crystal
 - Innovative Photonics Solutions: high power single-frequency diode lasers eliminated the need for fiber amplifiers in DFG
- DGF provided a path to high fidelity, tunable MIR-based gas analyzers, but prices still \$50K+
- Acquired by Thermo-Fisher in 2010, NovaWave developed DFG-based products, e.g. *Delta-Ray* for isotope analysis

New MIR Enabling Photonics: Interband Cascade Lasers

- <u>200X to Present</u>: ICL MIR lasers successfully developed and commercialized (Nanoplus)
 - High heat load, high power of QCL's solved
 - It took 15+ years to maturity
- Other key photonics developments:
 - MCT and InAsSb photodetectors (Vigo)
 - Chalcogenide aspheres (Lightpath)
 - Novel multipass cell designs (Aeris)

We founded Aeris in 2013 Mission: commoditize MIR-based ultrasensitive gas analyzers

The Present: Aeris MIRA: Middle InfraRed Analyzer The World's Most Sensitive, Portable Laser-based Gas Analyzer

MIRA Pico: Ultrasensitive "Lab-in-a-Lunchbox"

- ppb/s sensitivity and ppb level accuracy
 - 10x smaller, lighter, lower power
 - Currently ½ the price of comparable, 10x larger systems
 - Unmatched economy of scale
 - Three platforms: Pico, Ultra, and Strato

MIRA Redefines the State-of-the-Art in Laser-Based Analyzers

MIRA: Mid-IR Laser Absorption Spectroscopy

- Direct absorption spectroscopy
 - Simple, quantitative, linear
- Fingerprints are more discrete and *stronger in the Mid-IR*
 - <u>200x</u> stronger for CH₄
 - <u>6000x</u> for C₂H₆
 - <u>32,000x</u> for N₂O
- No FM: scanned spectrum provides tracability

The robust nature of direct absorption provides unmatched scalability

Aeris Patented, High Performance Sensor Engine

- MIRA: Disruptive, miniature sensor
 - Compact, **Patented** multipass cell
 - 13m path length in 60cc volume
 - <1ppb/s sensitivity typical.
 - 100x less susceptible to "dirty mirrors"
- Proprietary custom electronics
 - Low Power, miniature, lower cost
 - High A:D, fast digitizers, 8-layer design

10x reduction in analyzer size, weight, and power consumption at a disruptive price point

The MIRA Platform: Pico, Ultra, and Strato Series

MIRA PICO Series: "lab in a lunchbox"

- 1ppb/s sensitivity typical for most species
- Lunchbox sized (5.7 l vol., 2.75kg/6lbs)
- AC/DC, 15W, 6hr battery, GPS, WiFi, RS-232

MIRA Ultra Series: Low Drift

- Same core technology as *Pico Series*, *except*...
- Low drift via *temperature stabilized optical core*
 - 1-2ppb drift typical
- Portable and 3U Rackmount versions available
- Battery Option: 2-3 hours continuous operation

MIRA Strato Series: Drone

- Same as Pico, but smaller and lighter (2.8l vol., 1.9kg)
- 1.5 hour battery

Applications and Markets

- Environmental: Pollutants, Toxics, GHG
 - Formaldehyde: Indoor Air Quality, Low VOC products
 - Carbon Dioxide, Carbon Monoxide
 - Nitrous Oxide
 - Ethylene Oxide: Highly toxic carcinogen
 - Methane, ethane, ethylene, acetylene, propane...
- Oil and Gas:
 - Natural gas (Methane) leak detection
 - Fixed, Mobile, Drone: up-, mid-, and downstream

Monitoring these species in real-time using ultrasensitive systems will be commonplace in the future as costs/prices drop

MIRA Ultra N₂O/CO₂

- CO_2 is the #1 GHG, N2O is #3
 - Global GHG monitoring networks
 - Meets/exceeds WMO/NIST targets
- solar powered capability will enable autonomous monitoring in remote locations

16

Oil and Gas Markets: Up, Mid, and Downstream

Fixed CH₄ Monitoring:

- 24/7/365 Wellpad monitoring: 1M wells in US alone
- Compressor stations: (1400 large in US)
- Storage facilities (414 underground in US)
- Biogenic Methane Sources:
 - Landfills (3100 active, 10,000 old in US),
 - Livestock operations, feed lots (26,000 in US)

Mobile

- Utilities: *mobile mapping*: 70M gas customers in US
- Pipeline inspection (500K miles in US)
- Wellpad surveys: rapid screening tool
- Drone-based leak detection: high value assets
 Handheld
- Utility Leak surveys: "up to the meter"
- Wellpad/refinery/facility surveys

Autonomous (Fixed) Wellpad Monitoring: 24/7/365

- Solar Powered!
- ID leaky operations
- <1ppb/s CH_4/C_2H_6

Wellpad Monitoring ARPA-E MONITOR (DE-AR0000545)

- Aeris methane/ethane + wind + GPS + Neural Net Analytics= *leak location and size*
- Actual leak location is red, Calculated location yellow
- In the future, AI will be combined with this approach to autonomously monitor wellpads 24/7/365

Mobile Methane Leak Detection

- Wind + sensor data+analytics= <u>leak location and size</u>
- In the future, such systems will be commonly used to monitor urban pipeline health for gas utilities.

The Future: What market will commoditize MIR analyzers?

1,000,000 O&G wellpads in the US alone! (Secret: They ALL leak methane)

The Future: Commoditizing MIR Technologies

- <u>Ultrasensitive MIR analyzers for <\$8-10K is possible!</u>
 - There is currently no parallel large market for components as was the case in the NIR
- The simplicity of the MIR platform reduces the BOM, build, operational and maintenance costs
 - No \$\$\$ and fragile cavity optics, no wavemeters, no complicated fiber-coupled laser packaging, no piezo-scanned cavities, ultra-low power
- What is required of the component technologies?
 - Numbers- it's a numbers game!
 - more players and vendor sources

Can SAAS business models for sensor data remove the capex burden and change the game entirely?

Summary

- Ultrasensitive gas analysis has evolved in parallel with photonics technologies over the last 30 years: Telco NIR lasers + Cavities

- MIR Photonics have evolved significantly in the last 20 years

- Aeris has leveraged MIR Photonics advances to produce a disruptive gas analyzer platform, with 10x improvements in critical metrics: size, weight, power, performance. Enables new remote, handheld and mobile applications
- The future commoditization of MIR gas analysis is a numbers game, which could be realized in the near future by the need to monitor O&G operations

Acknowledgements (over the decades)

Co-conspirators (Dr.'s Anthony O'Keefe, Joshua Paul, Jerome Thiebaud, Stephen So, Stephen Holler, Hans-Jurg Jost.....and many more)

DoE, ARPA-E, DoD, NSF & NASA Funding

