

PICARRO

Photonics & Ultrasensitive Gas Analysis

Serguei Koulikov

January 2022

EPIC World Photonics Technology Summit - San Francisco - January 2022

WHO ARE WE?

- **Leading provider of solutions** to measure greenhouse gas concentrations, trace gases and stable isotopes across many scientific applications, along with the energy and utilities markets.
- Over 45 patents owned by Picarro or exclusively licensed from **Stanford University**
- ISO 9001:2015 Certified Corporate Headquarters, including R & D, Engineering and Manufacturing/Operations in Santa Clara, California
- 200+ employees including 35+ STEM PhDs
- Thousands of Picarro instruments in 60+ countries world-wide

MOLECULES MEASURED

GHG analyzers:

- Carbon Dioxide (CO₂)
- Carbon Monoxide (CO)
- Methane (CH₄)
- Nitrous Oxide (N₂O)
- Water Vapor (H₂O)
- · and more...

Suitable for concentration analysis in the atmosphere. Analyzers are optimized for atmospheric concentration.

Trace gas analyzers:

- Ethane (C₂H₆)
- Ammonia (NH₃)
- Hydrogen Fluoride (HF)
- Hydrogen Chloride (HCl)
- Formaldehyde (CH₂O)
- Acetylene (C₂H₂)
- Ethylene (C₂H₄)
- Hydrogen Sulfide (H₂S)
- Hydrogen Peroxide (H₂O₂)
- Ethylene Oxide (C₂H₄O)

Suitable for trace gas detection just above nothing. "To detect the absence of a gas" these analyzers have a lower detection limit.

Isotope analyzers:

- δ^{13} C in high concentration CO₂
- δ^{13} C in CH₄ and C₂H₆ / CH₄
- δ^{13} C in CO₂
- δ^{13} C in CH₄
- δ^{13} C in CO₂ and CH₄
- δ^{18} O and δ D in H₂O
- δ^{18} O, δ^{17} O, δ D and 17 O-excess in H₂O
- δ^{15} N, δ^{15} Na, δ^{15} Nb and δ^{18} O in N₂O
- O_2 concentration and $\delta^{18}O$ in O_2

PRODUCTS SOLD

GREENHOUSE GAS AND TRACE GAS ANALYZERS

Greenhouse Gas Analyzers (concentration only)

- CO₂, CH₄, H₂O • G4301 CO₂, CH₄, H₂O (portable) • G4302 CH₄, C₂H₆, H₂O (portable)
- G2311-f GO₂, CH₄, H₂O (10Hz) • G2401 CO2, CO, CH4, H2O • G2401-m GO₂, GO, CH₄, H₂O (flight)
- N2O, CH4, H2O • G2308 • G2508 N2O, CH4, CO2, NH3, H2O • G5310 N₂O, CO, H₂O

Trace Gas Analyzers (concentration only)

- G2103 Ammonia (NH₃) • G2106 Ethylene (C2H4)
- G2108 Hydrogen Chloride (HCI) • G2114 Hydrogen Peroxide (H₂O₂)
- PI2114 Hydrogen Peroxide (H₂O₂)
- G2203 Acetylene (C2H2) and CH4 • G2204 Hydrogen Sulfide (H₂S) and CH₄
- G2205 Hydrogen Fluoride (HF) and H₂O • G2307 Formaldehyde (CH2O), CH4 and H2O
- Ethylene Oxide (C2H4O), CO2, CH4 and H2O • G2910

Peripherals for GHG Analyzers

- 16-port Manifold, multiple inlet system
- A0701/A0702 Recirculation Pump for closed system measurement A0314
 - Small Sample Introduction Module (SSIM2) for discrete

samples & dilution

Peripherals for Trace Gas Analyzers

- A0311 16-port Manifold, multiple inlet system
- A0311-s 16-port Manifold SilcoNert Version, multiple inlet system

ISOTOPE ANALYZERS

A0314

• A0201

• A0302

• A0217

Carbon Isotope Analyzers

- G2131-i δ13C in CO₂ G2132-i δ13C in CH4
- G2201-i δ13C in CO2 and CH4
- G2121-i δ13C in CO2 -> (high range for CM)
- G2210-i δ13C in CH₄, CH₄ and C₂H₆ concentrations

Nitrogen Isotope Analyzers

Site-specific δ¹⁵N and δ¹⁸O in N₂O

Peripherals for Nitrogen Isotope Analyzers

Peripherals for Carbon Isotope Analyzers

• A0311 16-port Manifold, multiple inlet system

samples & dilution

• A0314 Small Sample Introduction Module (SSIM2) for discrete

Automate-Fx, prep device for DIG/GO₂

16-port Manifold, multiple inlet system

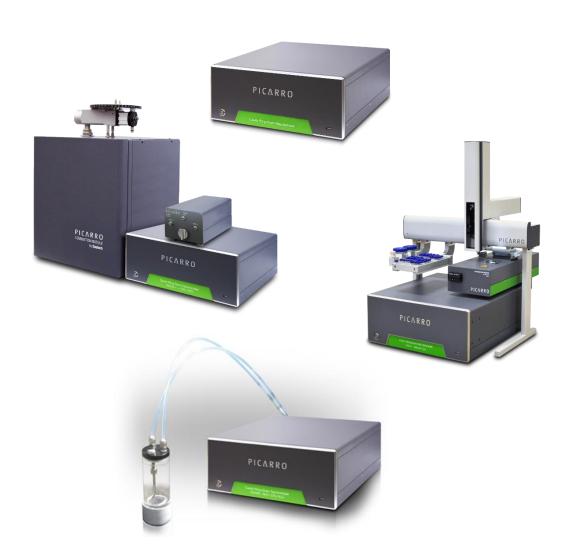
Combustion Module (CM) for bulk samples

Small Sample Introduction Module (SSIM2) for discrete

• A0701/A0702 Recirculation Pump for closed system measurement

samples & dilution

Water Isotope Analyzers

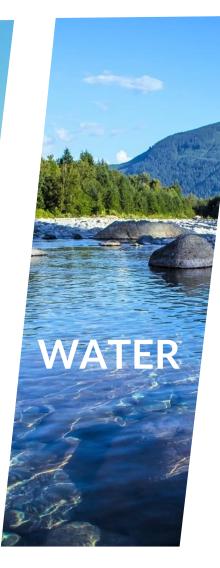

- L2130-i δ18O, δD in H2O
- L2140-i δ18O, δ17O, δD and 17O-excess in H2O

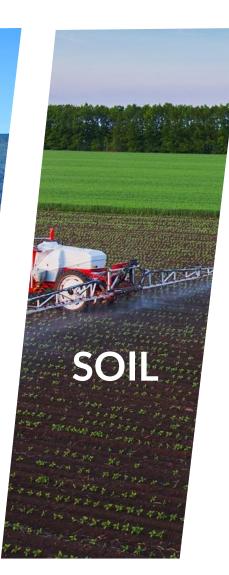
δ¹8O and concentrations of O₂

Peripherals for Water Isotope Analyzers

- A0101 Standard Delivery Module (SDM) for calibration of vapor
- A0211/A0325 High-Precision Vaporizer and Autosampler for high-
- precision isotope analysis of liquid water samples A0214 Mirco-Combustion Module (MCM) for removal of
- organics from liquids
- A0213 Induction Module (IM) for matrix-bound water extraction
 - Continuous Water Sampler (CWS) for continuous water
 - isotope analysis

Note: Contact Picarro for information on other, third-party, front-end compatibility!

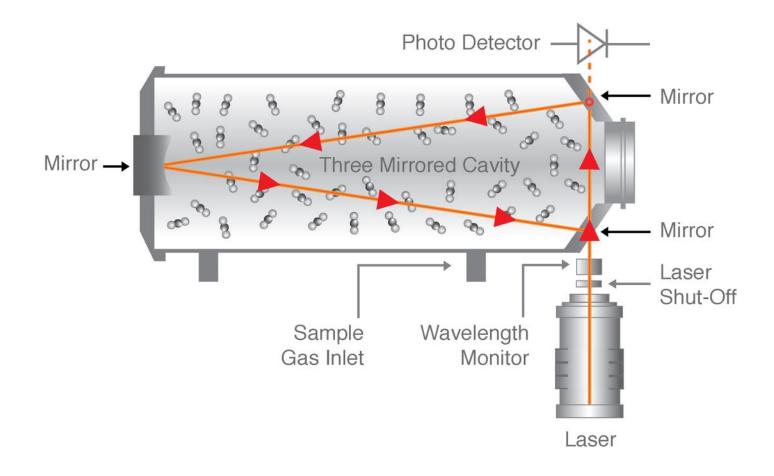




AND MARKETS SERVED

- Scientific Research: Agronomy, Air Quality, Atmospheric Science, Ecology, Ecosystem Science, Geochemistry, Geology, Hydrology, Ocean Sciences, Soil Science
- Emissions: Greenhouse Gases, Industrial Emissions, Urban Emissions
- Energy: Natural Gas Leak Detection, Upstream Emissions and O&G Production
- Food, Chemicals & Pharma:
 Adulteration, Packaging, Supply
 Chain Integrity, Cleanroom
 Monitoring

DEPLOYED ACROSS THE GLOBE, IN ANY SITUATION

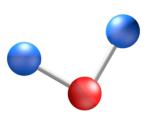


Technology Platform Cavity Ring-Down Spectroscopy

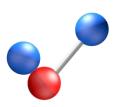
EPIC World Photonics Technology Summit - San Francisco - January 2022

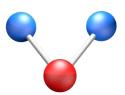
PICARRO © 2022 Picarro Inc.

CRDS: TIME, NOT ABSORBANCE

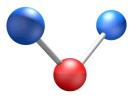


- CRDS utilizes the unique infrared absorption spectrum of gas-phase molecules to quantify the concentration of (and sometimes isotopes of) H₂O, CO₂, CH₄, N₂O, CH₂O, NH₃, etc.
- Measure decay rate, rather than absolute absorbance
- Small 3-mirrored cavity ~ 35 cc
- Long effective path-length (> 10 km)
- Time-based measurement
- Laser is switched on and off, and scanned across wavelengths


OPTICAL SPECTROSCOPY - MOLECULES IN MOTION

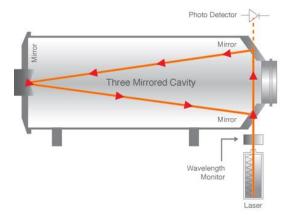

Symmetrical stretching

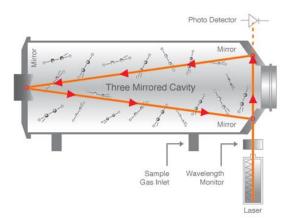
Rocking

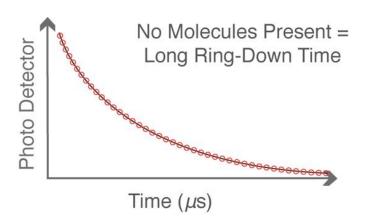

Antisymmetrical stretching

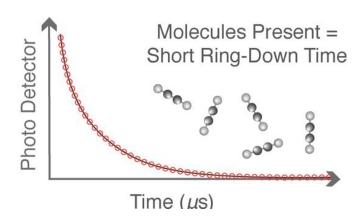
Wagging

Scissoring


Twisting


INCREASING CONCENTRATIONS FASTER RING-DOWN


Absorbing species follow Beer-Lambert Law


No gas molecules in cavity (or absorbing at measuring frequency)

Gas molecules in cavity (gas absorbing at measuring frequency)

ENABLING SCIENCE THROUGH CRDS

Carbon Isotopes

GHG Concentrations

Water Isotopes

Nitrogen & Oxygen Isotopes

Trace Gases

Flight Measurements

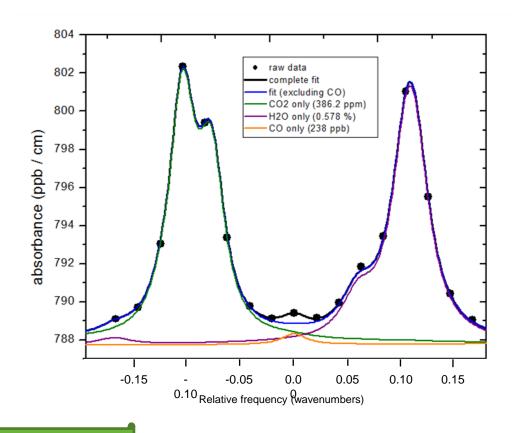
Soil Gas Flux

THE FIVE S'S OF PICARRO CRDS

Stability

Selectivity

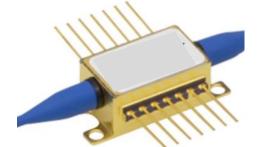
Speed


Sensitivity

Simplicity

GENERATING STABLE SPECTROGRAMS

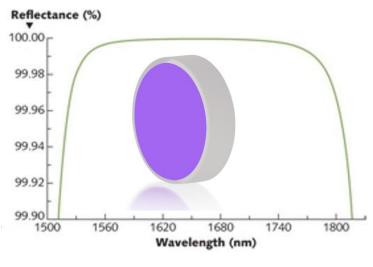
- 1. A high-quality absorption measurement
 - CRDS delivers a precise and accurate measurement of the optical loss
- 2. A clean stable frequency axis
 - An accurate and precise tool for determining the laser wavelength
- 3. Precise temperature control
 - Engineered control loops
- 4. Precise pressure control
 - Engineered control loops


MAJOR CRDS PHOTONICS COMPONENTS

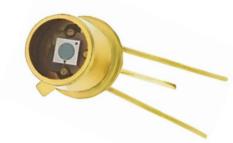

DFB-lasers

Fiber collimators

Semiconductor Optical Amplifiers (SOA) / Shatters



Wavelength Division Multiplexers


Photonics is the physical science and application of light generation, detection, and manipulation through emission, transmission, modulation, signal processing, switching, amplification, and sensing.

https://en.wikipedia.org/wiki/Photonics

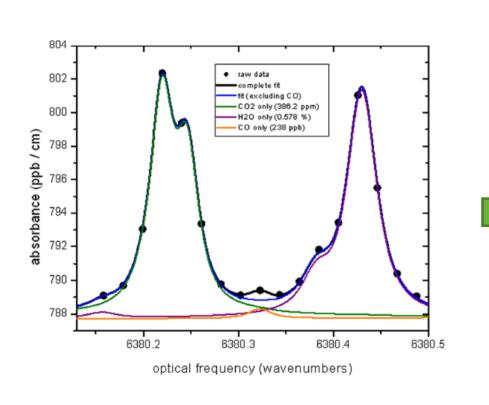
Isolators

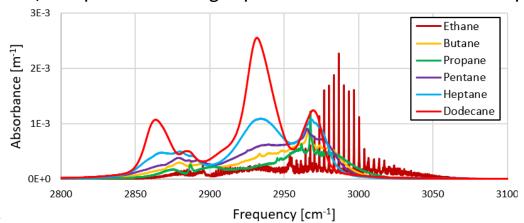
Broadband high-reflectivity mirrors

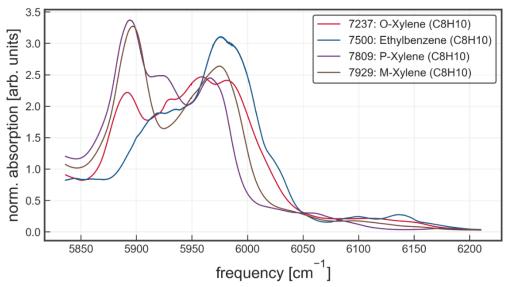
Optical switch

Photodiodes

FULL LIST OF THE MOLECULES HAVING RESOLVED VIBRATION-ROTATION SPECTRA


H ₂ O	Water
CO ₂	Carbon Dioxide
O_3	Ozone
N ₂ O	Nitrogen oxide
CO	Carbon Monoxide
CH ₄	Methane
O_2	Oxygen
NO	Nitric Oxide
SO ₂	Sulfur Dioxide
NO ₂	Nitrogen Dioxide
NH ₃	Ammonia
HNO_3	Nitric Acid
HF	Hydrogen Fluoride
HCI	Hydrogen Chloride
HBr	Hydrogen Bromide
HI	Hydrogen lodide
CIO	Chlorine Monoxide


OCS	Carbonyl Sulfide
H ₂ CO	Formaldehyde
HOCI	Hypochlorous Acid
N_2	Nitrogen
HCN	Hydrogen Cyanide
CH ₃ Cl	Methyl Chloride
H_2O_2	Hydrogen Peroxide
C_2H_2	Acetylene
C_2H_6	Ethane
PH ₃	Phosphine
COF ₂	Carbonyl Fluoride
SF ₆	Sulfur Hexafluoride
H ₂ S	Hydrogen Sulfide
НСООН	Formic Acid
CIONO ₂	Chlorine Nitrate
HOBr	Hypobromous Acid
C ₂ H ₄	Ethylene

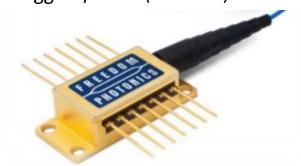

Methanol
Methyl Bromide
Acetonitrile
PFC-14
Diacetylene
Cyanoacetylene
Hydrogen
Carbon Monosulfide
Sulfur trioxide
Cyanogen
Phosgene
Sulfur Monoxide
Methyl fluoride
Germane
Carbon disulfide
Methyl iodide
Nitrogen trifluoride

FROM DFB LASERS TO TUNABLE LASERS

https://agu.confex.com/agu/fm21/meetingapp.cgi/Paper/969594

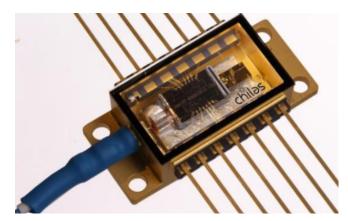
WIDELY & FAST TUNABLE LASERS

MG-Y (Modulated Grating Ybranch) laser

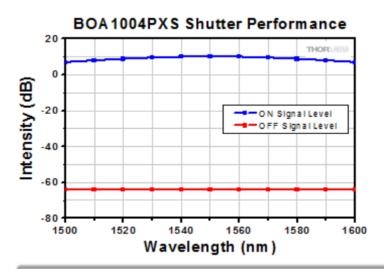

Distributed Amplification Chirped Sampled Grating Distributed Reflector (DA-CSG-DR) laser

Our wishes:

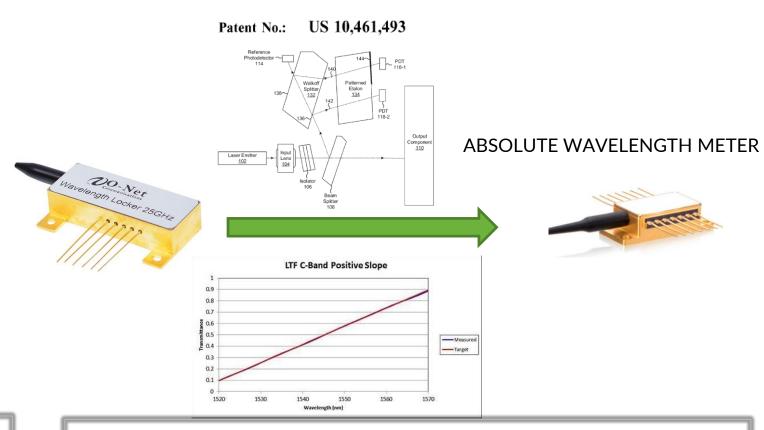
- Different spectral ranges (including Mid-IR)
- Wide tuning ranges
- Fast random-access tuning
- Narrow linewidth
- Integrated Electronics


Sampled Grating Distributed Bragg Reflector (SG-DBR) laser

Digital Supermode (DS)-DBR laser

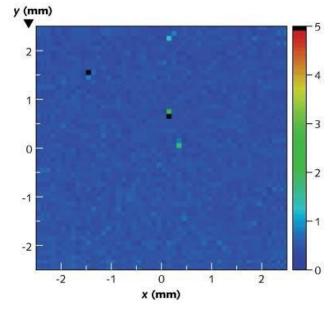


Hybrid Integrated Semiconductor Laser


HIGH-SPEED OPTICAL SHUTTER / SOA & ABSOLUTE WAVELENGTH METER

Our wishes:

- Off-State isolation > 100 dB
- Different spectral ranges
- High output power

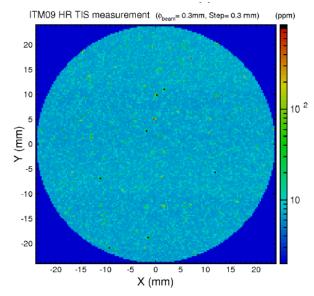


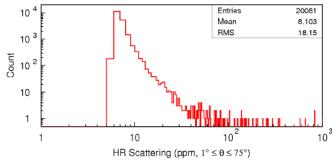
Our wishes:

- Precision < 1 MHz in 100-500 nm spectral range
- Fast (~100 kHz) measurements to provide a feedback to a laser driver

HIGH REFLECTIVITY MIRRORS

R. Lalezari , N. Anderson. OPTICS FABRICATION: High-performance mirrors excel for intracavity applications. Laser Focus World. Jan. 31, 2012

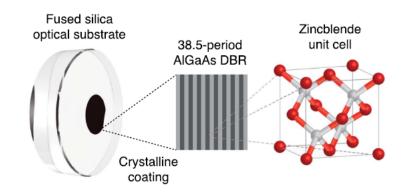



A photothermal common-path interferometry mapping of the surface of a high reflectivity dielectric mirror reveals absorption "hot spots." Here, only four regions of the mirror were found to have localized absorption losses greater than 1.5 ppm.

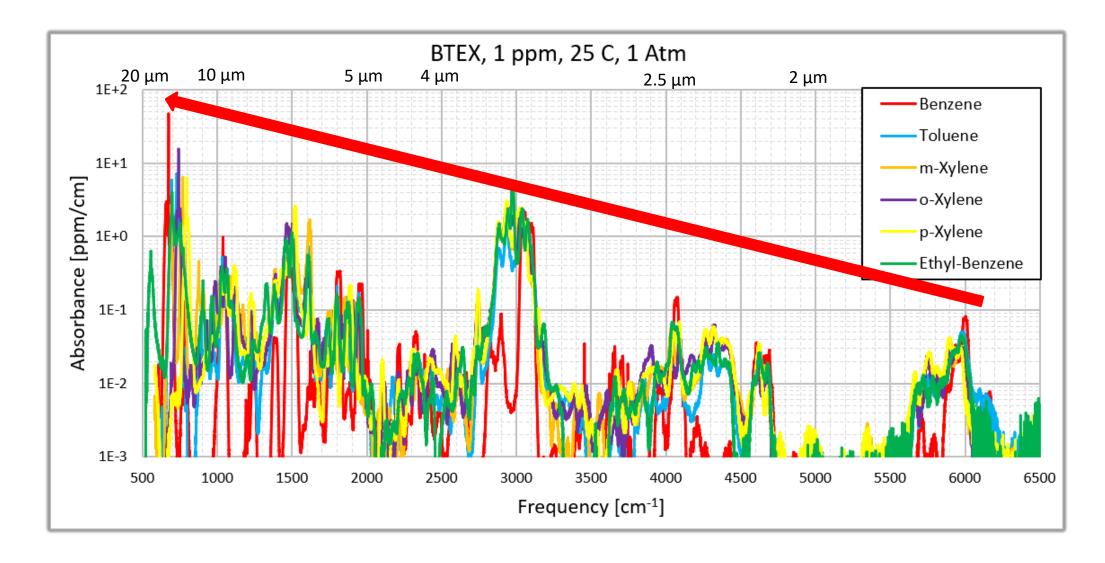
CHARACTERIZATION OF ADVANCED LIGO CORE OPTICS

G. Billingsley, H. Yamamoto, and L. Zhang LIGO Laboratory

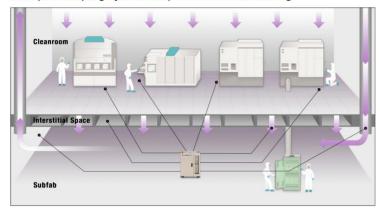
California Institute of Technology Pasadena, California, USA.



Our wishes:


- Low scattering (< 1ppm)
- Low absorption (Mid-IR)
- High HR surface homogeneity

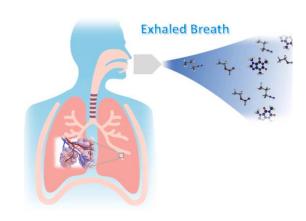
Crystalline Mirror Solutions: Semiconductor Supermirrors Optical losses on par-with with the best IBS coatings


- absorption < 1 ppm via PCI in the NIR, scatter loss < 3 ppm
- cavity finesse > 600,000 (R > 99.9995%) measured at 1550 nm

FROM NIR TO MID-IR

Multi-port Sampling System Setup for Fab AMC Monitoring

Air pollution



MARKETS

Industrial Processes

Disease biomarker detection

Biotech manufacturing facilities

