High efficiency diffractive optics for ToF and LiDAR applications

Niklas Hansson, Head of Application Engineering, NIL Technology <u>nh@nilt.com</u> | <u>www.nilt.com</u>

EPIC Meeting on Diffractive Optics at Laser World of Photonics

Messe Munich, Munich, DE

28 April 2022, 2:00-4:00 PM

© 2022 NIL Technology

Me

Niklas Hansson

- Head of Application Engineering
- Gothenburg, Sweden
- Joined NIL Technology 2012
- General focus across DOE, MOE and MLA to find best optical solution for a given product

Volume Manufacturing

Receiver optics (Rx)

Transmitter optics (Tx)

9. Summary

Agenda

2.

3.

4.

5.

6.

8.

1. NIL Technology

DOE applications – ToF/LiDAR

Conventional approach to ToF/LiDAR

7. What is the difference between DOE and MOE

NILT's approach to improving ToF/LiDAR by flat optics

NIL Technology

1. Manufacturing optical elements, components and modules

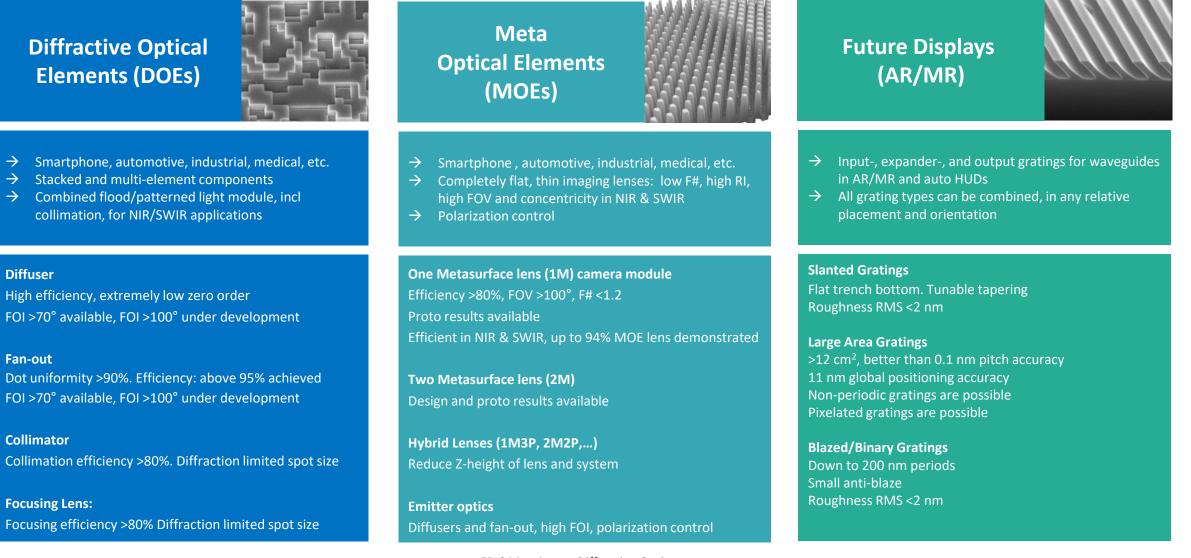
- Optical elements, Rx and Tx: diffusers, fanouts, collimators, focusing/imaging lenses; and building integrated functionalities
- Optical components and modules
- Key technologies: DOE, MOE, gratings, MLA...
- 2. Mastering technologies for diffractive waveguides

Component

 Masters (and working stamps) for VR/AR displays to make diffractive planar waveguides

Key technologies

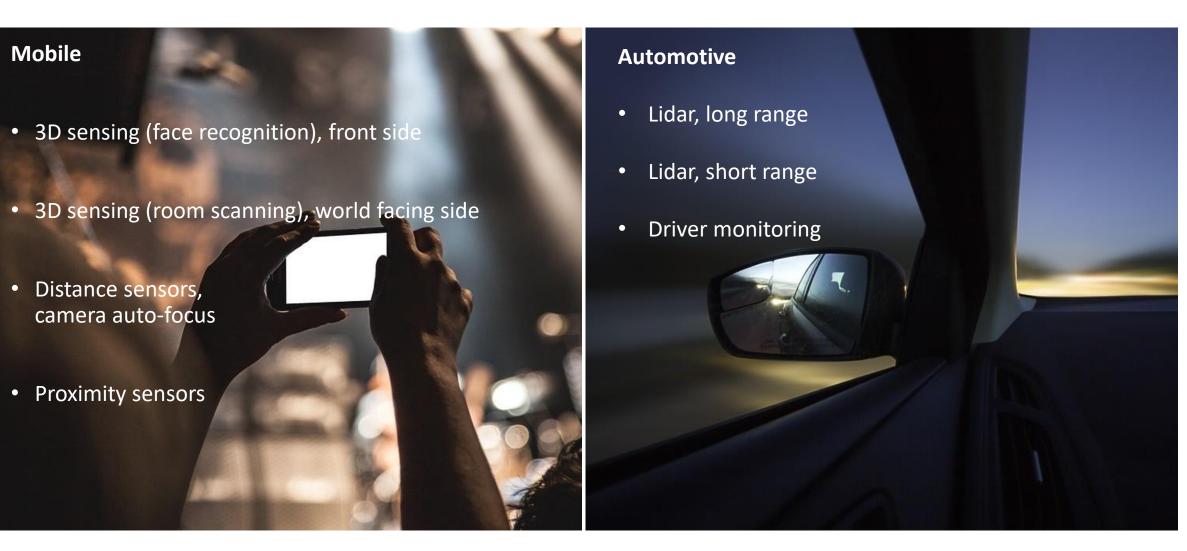
Module


Niklas Hansson | NIL Technology ApS Head of Application Engineering | <u>nh@nilt.com</u>

Element

EPIC Meeting on Diffractive Optics at Laser World of Photonics by Zürcher Kantonalbank

Technology | Illumination, Sensing, Imaging, Displays



Niklas Hansson | NIL Technology ApS Head of Application Engineering | <u>nh@nilt.com</u> EPIC Meeting on Diffractive Optics at Laser World of Photonics

Applications | DOE/MOE

Niklas Hansson | NIL Technology ApS Head of Application Engineering | <u>nh@nilt.com</u>

ToF/LiDAR | Conventional approach

Receiver based on refractive optics

- Low relative illumination
- Sensitive to temperature
- Many lenses required
- Bulky (large TTL)

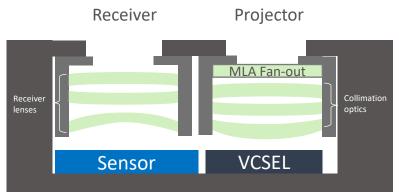


Fig 1. Sketch of Lidar.

Dot projection (MLA)

• Low dot uniformity

Flood illumination (MLA)

• Diffuse edge of FOV

NILT solution | Benefit from the power of diffractive optics today

Receiver

Meta optic

Meta optic

Sensor

Receiver

lenses

Flat lenses (MOE)

- High relative illumination
- Low sensitivity to temperture
- Reduced number of elements
- Lower TTL

1 MOE solution for NIR imaging available today

Ready solution – replace MLA with DOE fan-out and keep collimation solution for upgrading performance

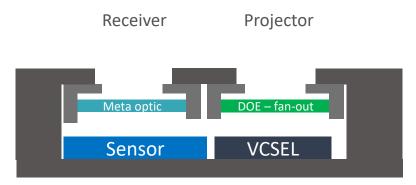
Dot projection (DOE)

Increased uniformity of dots

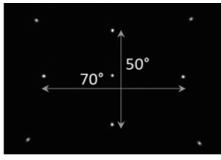
High efficiency

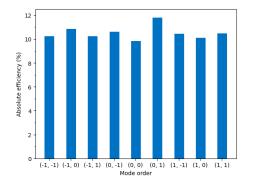
Collimation

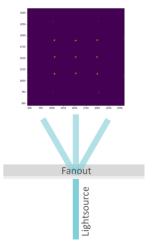
Niklas Hansson | NIL Technology ApS Head of Application Engineering | nh@nilt.com Projector


DOE Fan-out

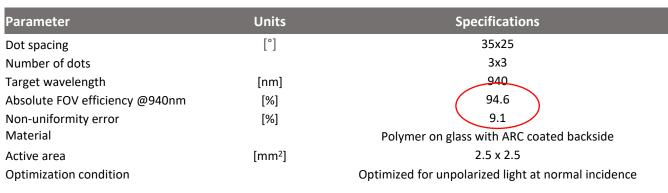
VCSEL

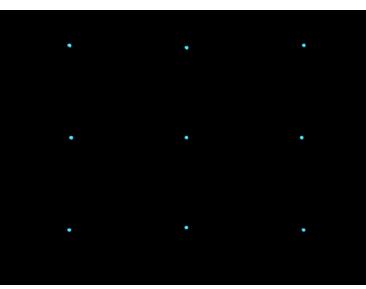

Single element solutions with high efficiency for both Rx and Tx


ToF/LiDAR | Tx – dot projection


NII TECHNOLOGY

- Polymer on glass •
- Optimized for 940 nm VCSEL light source •
- Absolute control of the zero-order transmission •
- High absolute efficiency, above 94% •
- <10% non uniformity •



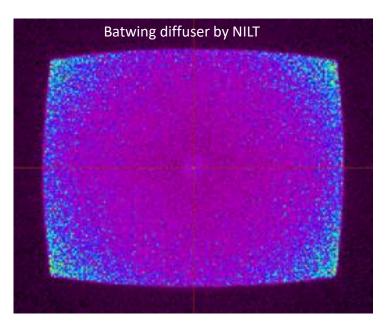

Projected on flat screen (measured)

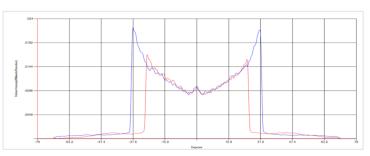
Angular space

Parameter

Dot spacing

Material


Active area

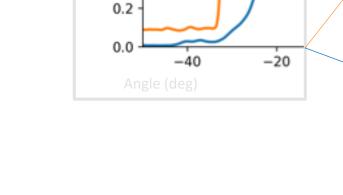

Flood illumination | DOE

NIL TECHNOLOGY

NILT designs high performance diffusers:

- Tailored light profile to match receiver
- Wide FOI (>90°)
- Steep edges (90% \rightarrow 10% in <1°)
- Low zero order (<0.1%)

Intensity profile measured with collimated input beam


High control of illumination shape and Steep slope for DOE Gentle slope for MLA corners compensate for diffraction

Flood illumination with DOE vs MLA | Example: Diffuser for iToF

efficiency losses. A higher FOI efficiency can be achieved compared to using MLAs

	DOE	MLA
Shape control	Good	Poor
Corners	Sharp	Washed-out
FOI	No loss outside FOI	High loss outside FOI
Efficiency in FOI	High	Low

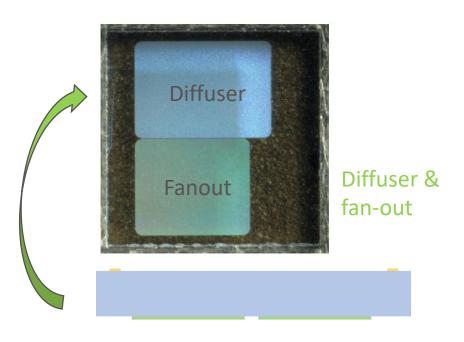
DOE = Diffractive Optical Element RI = Relative illumination FOI = Field of Illumination MLA = Micro Lens Array

NILT DOE diffuser

State-of-the art commerical MLA diffuser

1.4

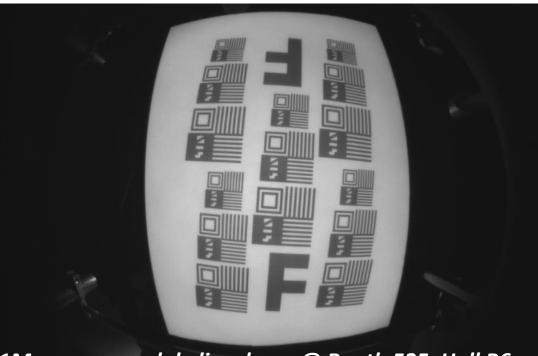
0.8


0.6

Dual function elements | Diffuser & Fan-out

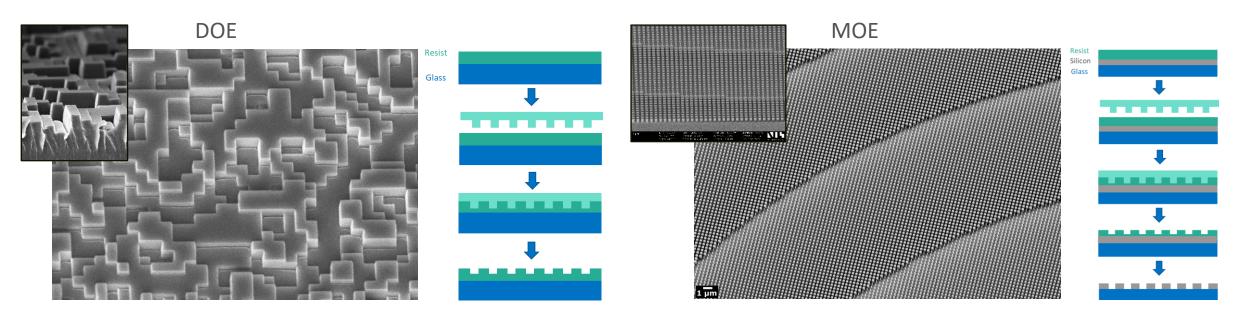
NILT's DOE technology platform enables manufacturing of different optical elements on the same optical die

- Example shown here integrates diffuser and fan-out on the same optical die
 - > Multiple functionalities in one optical element
 - > One element technology allows for more compact systems
 - One process step to make multiple functionalities
 - Simplified assembly
- Many other combinations possible


Receiver | Single surface meta camera (1M @ 940 nm)

In-house designed & manufactured 1M samples

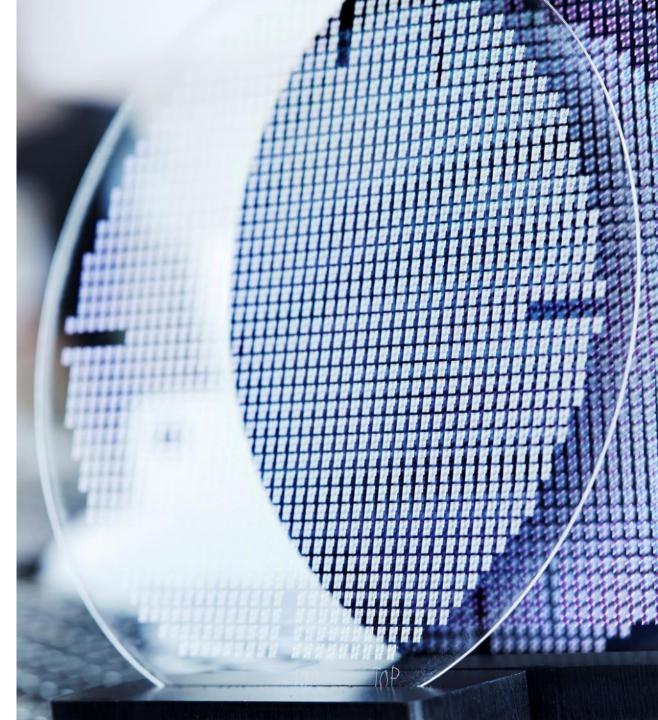
Parameter	Specifications	
Wavelength	940 nm	
EFL	1.24 mm	
TTL	3.1	
FOV, diagonal	80°	
F/#	1.6	
CRA	<1.5°	Lens MTF (Average Sag/Tan)
Distortion	23%	Nyquist = 227 lp/mm
Aperture Diameter	0.78 mm	0.0 F = 0.75
Lens Diameter	Ø 2.50 mm	0.5 F = 0.74
BFL	1.213 mm	0.8 F = 0.71


1M camera module live demo @ Booth 525, Hall B6

1M = High performance with only <u>1 optical surface</u>

- 90% efficiency
- Telecentric, high RI design
- Good performance match between realized prototype and design
- Designed, prototyped and characterized inhouse
- Samples available

DOE and MOE


- Light is considered as waves and controlled by phase shifts
- Characteristic length scale $\approx \lambda$
- Polymer on glass
- DIFFRACTIVE

- Light controlled by meta-atom resonance frequencies
- Characteristic length scale <<λ
- High refractive index material on glass (e.g., Si on glass for NIR, TiO2 for vis)
- DIFFRACTIVE

Ready for Mass Production

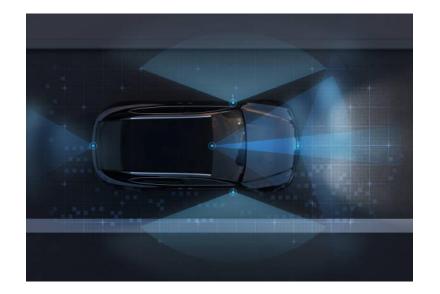
Design, prototyping and testing of optical elements entirely within NILT \rightarrow fast development cycles

- Mass Production by NIL
 - Replication and nanoimprint lithography
 - Proven process
 - In-house assembly of optical components by wafer level stacking is possible
- Wafer level production process enables cost effective mass production
- 100% Functional Optical testing on wafer
- NILT Standard Reliability Stress Conditions
 - Reflow
 - Temperature Cycling
 - High humidity high temperature cycling

Niklas Hansson | NIL Technology ApS Head of Application Engineering | <u>nh@nilt.com</u>

CONFIDENTIAL

Summary | ToF/LiDAR application benefits



Rx - Receiver

- Fewer elements
- More compact system (reduced TTL)
- Increased light collection
- Higher relative illumination

Tx - Projection

- More light through the system by pushing efficiency
- Higher uniformity across FOV

This enables higher accuracy, lower power consumption and longer range

NIL TECHNOLOGY

NIL Technology

nilt.com

P +46 708 57 96 69 M <u>nh@nilt.com</u>