

Programmable Photonics

Optical Computing with Programmable Photonics

José Capmany

European Innovation Council (EIC) established by the European Commission, under the Horizon Europe programme (2021-27)

Introduction & Motivation

The current pain

Emerging Applications with voracious processing & bandwidth appetite!!

5G and Beyond

Bio instruments

Lab-on-a-Chip Sensors

Internet of Things

Autonomous driving

Neurocomputing and Artificial Intelligence

Hardware acceleration

Avionics & Space

Quantum Information

Demise of Moore and Dennard Scaling Laws

Most of these require heavy computing capabilities

Electronics needs to team up with other technologies to meet these requirements.

A win-win solution: Electronics + Photonics

Photonics provides bandwidth, low power consumption and is complementary to Electronics.

Application-Specific Photonic Integrated Circuits are being successfully integrated into applications yet, their time-to-market and fabrication cost is many times a show stopper.

The solution is **Programmable Photonics!**

Solutions equivalent to FPGAs, DSPs, microprocessors and computers will be needed.

BUT....these computing approaches will not be non Von-Neumann inspired

- √ Hardware challenges (More than Moore)
- ✓ Computational challenges (Beyond Moore)
- ✓ Analog approach

More efficient architectures and packaging (More Moore)

Programmable Photonics

Plug & Play Programmable Processor

Multipurpose photonic processor including:

Photonic layer: a flexible optical core and IP/High performance blocks

Electronic layer: monitoring & control

Software layer:

programming, optimization & interface with network control layer

Programmable Unit Cell: How does it works?

Control Electronics

 $\Delta = \frac{\Phi_1 + \Phi_2}{2}$ Sets the (independent) phase shift

Photonics Layer

Programmable Silicon photonics waveguide mesh

IP/High performance blocks

- Lasers
- Detectors
- Amplifiers
- WDM MUX/DEMUX
- etc

Software Layer

Programmable Photonics

Some Computing approaches

Some basic functionalities

Can implement any arbitrary complexvalued NxN Matrix transformation through the emulation of a multiport interferometer.

This includes:

- a) Pure switching
- b) Switching+Multicasting
- c) Broadcasting
- d) Complex interconnection maps
- e) Matrix-vector multiplication
- f) DFT

- Parallelized matrix vector multiplication
- Feedforward/feedbackward propagation allows backpropagation
- Arbitrary unitary matrices can be programmed

Reservoir computing

- A circular topology implemented by a waveguide mesh implementing MRRs can be employed
- MRR Drop ports are used as spatial outputs
- Electrical readout
- Waveguides between MRR-nodes exhibit random phase delay (ϕ_W) and attenuation K_W emulating the "random" connection matrix of the RC

layer

Analog Photonic Computing

Summary & Conclusions

Adding Extra Flexibility to Coherent Transceivers

- There is an increasing requirement for computing power that standalone electronics cannot meet.
- Programmable Integrated Photonics is a matching technology compatible with electronics but brings different and complementary features that can be exploited for non Von-Neumann computing.
- In particular a General Programmable Plug and Play Photonic Processor, provides the required flexibility to implement feedforward and feedbackward computing architectures.
- In the context of computing programmable photonics can be employed to implement:
 - Al and ML via matrix-vector multiplication
 - Reservoir computing
 - Convolutional Neural Networks
 - Analog Photonic computation (using a new unit of information)