

Laser Beam Scanning for Near-to-Eye Display Applications: Synopsis of Architectural, Optical, Photonic and System Considerations

Bharath Rajagopalan, Ph.D.

Director, Strategic Marketing, STMicroelectronics, Inc. Chair LaSAR Alliance

EPIC Meeting on Photonics for AR/VR/MR: From Design to System Integration and Mass Production at Jabil Optics

11 May 2023 Jena, Germany

Agenda

1	Principles behind, and benefits of LBS	5	Diffractive Waveguides
2	Optical Light Engine Design	6	LaSAR Alliance
3	Optical Light Engine Architectures	7	Summary
4	Combiner Optics		

Challenges and Opportunities for AR Wearables

Practical and Useful

Immersive and Niche

Image (adapted) courtesy of Nikhil Balram, Eyeway Vision, https://www.youtube.com/watch?v=Rt6zWDYI_dk

LBS technology can address the display needs and challenges of both markets BUT immersive have many more challenges beyond just the display

Principles Behind and Benefits of LBS

Benefits of LBS High brightness Low power Small form factor Scalable FoV Scalable resolution

Optical Light Engine Design

Miniaturization with Advanced Laser Diode Designs

Enabling small form-factor wearable devices – e.g., AR glasses

ST Platform for LBS

Combining ST advanced technologies for µ-mirrors and laser / mirror drivers to enable XR applications

life.augmented

Optical Light Engine Details

VEGALAS[™] RGB - Laser Module Characteristics

Parameter	Specification
Package Type	SMD Top-looker Hermetically sealed
Dimensions	7.0 x 4.6 x 1.2 mm
Laser diodes	1 Chip-on-Submount per color
Wavelength for R/G/B	640nm / 520nm / 450nm
Optical power for R/G/B	100mW / 50mW / 80mW
Laser diode spacing	2.3mm
Beam divergence (FWHM)	7° x 22° per color
Optics	 Prisms to reflect beams to the top AR-coated glass lid Beam collimation & combination outside of module

Slide courtesy of amus OSRAM

Optical Light Engine Architectures

Flexibility and Scalability

Lissajous Scanning

after 8.33ms 1 / 120 s

mage courtesy of	
------------------	--

after 16.66ms 1 / 60 s

MBS	VS.	Standard LBS

Much higher **resolution** and **uniformity** for a given MEMS and framerate

Direct Retinal Scanning

Image courtesy of CIMUI OSRAM

Combiner Optics

Key Optics Challenge: FOV vs. Eyebox

h1, Ω1 generally fixed

h2, Ω2 to be optimized (FOV vs. Eyebox tradeoff)

Etendue or Lagrange Invariant:

- Product of solid angle of light with a surface must be conserved in the optical system
- Rule of thumb:

Example, 1 mm MEMS mirror with HSCAN angle 48°, FOV 40° diagonal (~35° horizontal at 16:9 aspect ratio)

h2 = 1.4 mm (horizontal eyebox width)

Since the display is usually fixed then either optical design <u>must expand</u> <u>the exit pupil or eyebox</u> through additional optical elements or using waveguides for eyebox expansion or make performance tradeoffs

Microdisplay

Polarized waveguide

https://hackernoon.com/fundamentals-of-display-technologies-for-augmented-and-virtual-reality0

Reflective waveguide

15

Non-Guided Wave Optics

Source: www.altexsoft.com/blog/engineering/augmented-reality-check-get-ready-to-ditch-your-smartphone-for-goggles/

Source: Chris Grayson, 2019 Consumer Smart Glasses Report

Diffractive Waveguides and LBS

LBS Projector to Waveguide Coupling

Direct scan coupling

• Scan laser beam at the incoupling grating, raster or Lissajous scan

Relay coupling

- Relay lens used to reduce projector exit pupil dimension
- Relay lens for the beam expansion

Choice depends on

- FOV target
- MEMS mirror size
- Beam size
- Spectral selection
- Weight and size targets

A simple relay optics configuration for 2X beam magnification

Courtesy of dispelix

Challenges And Solutions for LBS Compatible Waveguide Displays

Coherence induced Newton rings

→ Control by laser coherence manipulation and waveguide architecture

Coherence induced nonuniformity → Control by waveguide architecture

Component match within a full electro-optical integration is critical for a good virtual image performance, including factors such as uniformity and MTF

→ Control by laser properties, in-coupling methods, waveguide architecture, MEMS mirrors

Slide courtesy of dispelix

Ultra Short Pulses for Suppressing Coherence Artifacts

- Bandwidth broadening with shorter pulses: FWHM 1nm => 2nm
- Broader spectrum reduces coherence artifacts by diffractive waveguide combiners

Source: Ulrich Schwarz, Institute of Physics, Chemnitz University of Technology, Chemnitz 09126, Germany

Slide courtesy of amu OSRAM

Newton Ring Mitigation with Laser Drive Modulation

Source: Juuso Olkkonen, SPIE AR.MR.VR 2021 Conference (Virtual)

The LaSAR Alliance

life.auamented

It Take a Village: The LaSAR Alliance Ecosystem of Companies

LaSAR Alliance Synopsis

- Enable, facilitate and promote development of technologies, devices and solutions around LBS for near-to-eye display products
- Establish ecosystem making available to ODMs and OEMs commercially viable and available components and solutions towards the design, development and manufacturing of augmented reality wearable products
- Create a forum for discussion on key challenges around LBS, including complementary technologies and solutions
- Longer term, develop standardization for technologies, devices
 & solutions around LBS
- Announced in October 2019 and launched in March 2020 with six Founding Members
- 3 current working groups/committees (Content, Image Quality Methods, Metrics and Measurements, Marketing)

Alliance mission accomplished: Will be significantly expanding scope – STAY TUNED!

Enabling Compelling AR Experiences

Focus on display is necessary, but many more technology challenges exist. Delivering compelling experiences: low latency, low power, light weight, <u>right specification (e.g. FoV, resolution etc.)</u> and an intuitive user interface

life.auamentec

Our technology starts with You

Contact info: bharath.rajagopalan@st.com

© STMicroelectronics - All rights reserved. ST logo is a trademark or a registered trademark of STMicroelectronics International NV or its affiliates in the EU and/or other countries. For additional information about ST trademarks, please refer to <u>www.st.com/trademarks</u>. All other product or service names are the property of their respective owners.

VEGALAS[™] RGB - Display Brightness & Laser power

27 life.augmented

Slide courtesy of amu OSRAM

Principles of Direct Retinal Scanning with Eye Tracking

Optical path sharing:

When MEMS move to correct the tracking, it also moves the projected image accordingly!

Patents: "Image Projection System" - WO2018220608A1 "MEMS based light deflecting device and method" - WO2020212984

Multi-Beam Scanning (MBS)

Laser beam scanning with dramatically better resolution, frame rate and image quality

MBS light engine for AR eyewear

Multi-ridge lasers

MBS	VS.	Standard LBS

Much higher **resolution** and **uniformity** for a given MEMS and framerate

MBS enables advanced display performance

System target specifications

Resolution	2100 x 2100
Field of view (Diag. degrees)	70
Brightness (nits)	1500
Frame rate (Hz)	90
Power consumption (mW)	500

Co-design & integration are key

Performance depends on the driver, the lasers and their connection

Slide courtesy of amu OSRAM

Summary: LBS Solutions Enable Holistic Design Philosophy

- Depending on the design requirements, appropriate tradeoffs can be made to achieve desired level of performance
- As an example:
 - Keep performance (e.g. resolution, FoV) and benefit from lower power
 - Increase resolution at same FoV, or keep resolution at increased FoV
 - Optimize between FoV and resolution and power consumption
 - Consider alternative optical light engine designs
- These tradeoffs can be made with relation to other system parameters such as brightness, size, weight, battery source etc.
- These tradeoffs can also be made with respect to combiner optical choices, illumination sources/types, materials, applications etc.